If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-7200=0
a = 6; b = 0; c = -7200;
Δ = b2-4ac
Δ = 02-4·6·(-7200)
Δ = 172800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172800}=\sqrt{57600*3}=\sqrt{57600}*\sqrt{3}=240\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240\sqrt{3}}{2*6}=\frac{0-240\sqrt{3}}{12} =-\frac{240\sqrt{3}}{12} =-20\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240\sqrt{3}}{2*6}=\frac{0+240\sqrt{3}}{12} =\frac{240\sqrt{3}}{12} =20\sqrt{3} $
| x+2x+3x+3=30 | | 45⋅5x=75 | | -7×=-2(x+15)=10 | | 0.6x=388,000 | | 2=-7+3x | | X+19=3x-5 | | X^2+2x-45=60 | | X^2-2x-45=60 | | 6+u/2=10 | | (3x)*(4x)=108 | | -10=3v+5 | | 2-x+5=3x+2 | | 8(8+9b)=80 | | 3-1=x/11 | | x+15x=97.75 | | 2(7n+10=62 | | 2w+4=32 | | -2x=4=3x=x-4 | | 80=5v-10 | | 2x^-28x+98=0 | | b+42/3=9 | | 102=4(18)+6h | | 4-(-7b+8)=-9 | | 4u-11=14 | | 2(u+8)=40 | | 2^60=1.15x10^18 | | (300-3x)x=0 | | 77-3x=-4x/2+7+13x | | 3+6=5w | | (3x+6)(8x+5)=0 | | -7x-7(5x-11)=-203 | | 0=-2x-2.5 |